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ANALYTICAL CONSIDERATIONS ON THE PROPAGATION OF A SHOCK
THROUGH FLUID, PLASTIC AND ELASTIC MEDIA

INTRODUCTION

The attached report is submitted as the twentieth Quarterly Progress
——

Report on Project NASr-7. The title of the project is '"'Shock, Flow and
Radiation from the Hypervelocity Impact of Microparticles'. The analytical
and experimental phases of this project are concerned with the phenomena
that occur with the hypervelocity impact of microparticles on a massive
target, which may be solid, or layered. The over-all objective is to
obtain a sufficiently fundamental understanding of the physical mechanisms
in the hypervelocity impact of a microparticle so that the momentum and
energy transferred from the particle to the target may be ascertained, and
possibly, the density of the incident microparticles may be estimated.

The attached report is a collection of references on the mechanisms
by which the shock from a hypervelocity impact is propagated, almost
radially, away from the zone of the impact. A report for an M.S., degree
is a review of published information and a collection of references on the

nnbj ar

subject

. It does not, necessarily, present new information. A report is
considered to require less than one third of the time to prepare that would
be required for a thesis and is usually, but not necessarily, used for
terminal degrees,

With velocities that are high in the hypervelocity range for the

impact of a microparticle, the pressure in the target and in the adjacent
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missile material may reach the magnitude of a few to perhaps 50 megabars.
In this pressure range, the materials are considered to flow as a non-
viscous fluid. As the shock front propagates into the target and away
from the impacting missile, the shock changes shape and the area of the
shocked front increases so the intensity of the shock decreases. As a
very rough approximation, the decrease is inversely proportional to the
square of the distance from the initial zone of impact. As the peak
pressure decreases, the shock interaction with the target no longer
produces a fluid media, instead the media is only made plastic. With
further decrease in amplitude of the shock front, the target material
transmits the shock while remaining an elastic material. This report
assembles the basic equations for the propagation of the shocks through
these three media. It does not discuss the coupling of the shock from
one media to another.

This report concludes with a short review of the Russian literature
on the shock compression of porous media. There is still more recent
American literature on the subject which substantiates most of the Russian
conclusions, but which extends the explanation still further than is
presented in this report. Work has been started to program the problem
for the impact of a porous sphere onto a semi-infinite slab of aluminum.
This computer program is to include the plastic and elastic material and
is expected to be very, very long. This computation will imclude the
effect of the change in media as the shock propagates away from the im-
pact zone.

As a preliminary to this long, proposed investigation that is start-
ing, the hypervelocity impact of thin plates of solid and of porous

materials is being investigated. The major area of difficulty in this
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particular phase is the reflection of the shock from the back faces of
the impacting, thin plates. The treatment of shock reflection from the
back face of the plate is difficult and is not entirely amendable to the
mathematics of a continuum. The reflected shock ruptures the plate along
irregular, non-plane interfaces of inherent weakness in the plate, The
position of these interfaces is not predictable by a simple treatment

of a continuum. The overall consequence of multiple rupture of the im-
pacting plate is to convert a part of the initial kinetic energy of the
plate into heat. An approximate method to allow for this conversion is

being investigated.
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CHAPTER 1
INTRODUCTION

The objective of the following study is to collect and to presgnt
a summary of the published concepts and equations for the last phase in
the solution of the problem of radial shock propagation from the hyper-
velocity impact of a sphere on a semi-infinite slab. An impact is
defined as in the hypervelocity range when the incident body approaches
the impact surface at a velocity that is in excess of the velacity of
sound in the target material. Preceding theses on this project have
considered the earlier phases of the impact. The present report will
concentrate on the last phases of the impact in which spherical shock
makes the transition from propagating through the self-produced fluid
region, into the self-produced plastic region and, finally, into the
elastic region. The last named region is the one in which the energy
input into thé material of the target from the passage of the shock is
too small to convert the elastic properties of the target material into
the plastic range. .

In the collection of information for this report, the discussion
includes several related subjects. 1In the following, the propagation
of a shock through an inviscid fluid is considered in some detail. This
is followed by a discussion of shock propagation through a plastic and
through an elastic material. In considering these types of shock propa-

gation, several subjects will be particularly emphasized. 1In the



discussion of shock propagation through the plastic media, the elastic-
plastic model will be discussed since this explains the separation of
the shock into a fluid shock and into an elastic precursor to the fluid
shock. In the discussion of elastic shock waves, the static and dynamic
elastic limits are differentiated and discussed. In addition, the con-
tribution of the Bauschinger effect in increasing the dynamic-elastic
limit is discussed. Equations of state are presented which are to be
the preliminary basis fer covering the elastic, plastic and fluid
regions for iron and aluminum. Some proposed equations of state for

special materials are mentioned.



CHAPTER II

DISCUSSION OF THE INVISCID, HYDRODYNAMIC MODEL FOR

HYPERVELOCITY IMPACT

Bethe (1) has shown that the propagation of a shock front through
any meterial may be calculated provided that the equation of state for
the material is known over the pressure range under investigation.
There are only three limitations on this statement, and these will be
considered and amplified later in this report. For pressures in excess
of a few megabars, it has been customary to obtain the solution by
employing the hydrodynamic equations for non-viscous flow (2). The
mathematical techniques are available to solve any problem of shock
propagation through an inviscid medium provided five equations are known.
As mentioned above, the equation of state must be known. The equations
for inviscid, hydrodynamic flow consist of three equations which are
for the conservation of mass, momentum and energy. The fifth and last
requirement is that the entropy must increase across the shock front.

In the part of this report, the propagation of a shock is con-
sidered for a region which is considered to be a non-viscous fluid.
This discussion is presented under three different headings. (a) There
will be a detailed consideration of the shock front and the equations
that relate the condition of the material on both sides of the shock
front. (b) The equations of state will be considered for several

materials, but there will be emphasis on the equation of state for



aluminum. It developes that the easiest way in which to include the
condition that the entropy increases across the shock front is to form-
ulate the equation of state in terms of the Hugoniot curve. This curve
gives the final state of the material that has been compressed by a
shock front. This is a direct and effective way to include the in-
crease in entropy by the compressive shock. (c) For completeness of
the treatment, the equations for hydrodynamic flow are listed. For
calculations with a computer, J. von Neumann and R. D. Richtmyer (3)
have shown that the solution without a discontinuity may be obtained by
the introduction of a pseudo-viscosity term that has two effects. It
damps out the computer induced oscillations in the solution, and it
spreads the sudden pressure increase in the shock front over a ficti-
tious width of two, to four of the mesh sizes that are used for the

computer solution.

Rankine-Hugoniot Conditions

In the preceding introduction, it was indicated that five equations
are sufficient to calculate the propagation of a shock wave. These
equations are not sufficient, without other considerations, to define
the conditions in the shock front. They are sufficient, however, to
relate the conditions in the medium just before the shock wave reaches
the medium to the conditions in the medium just after the shock front
has passed. These equations may be derived from the flow equations,
or they may be derived from basic considerations. They are so useful
that they are designated the Rankine-Hugoniot relations. The thermo-
dynamic significance of the equations is considered in order to show

that the increase in entropy across the shock front can be shown on a



plot of the pressure vs the volume.

The shock wave concept is concisely illustrated by consideration
of the following idealized situation. Suppose a uniform pressure, Pl’
is suddenly applied to the entire surface of a thick slab of a compress-
ible material, as shown in Figure 1. The signal that this pressure has
been applied is transmitted to the interior of the slab by means of a
stress wave. The material under shaded area is suddenly compressed to

a pressure, P If the compressibility of the material decreases with

1
increasing pressure, that is to say if the material behaves normally in
compression like most solid material, the wave front S will be essen-
tially a discontinuity in stress, density, material velocity, and
internal energy. The stress wave travels at supersonic velocity, with
respect to the undisturbed material ahead of it. Only at the limit as
P1 approaches zero does its velocihy become sonic. Except in the sonic

limit, S is called a shock front.

If the pressure P. remains constant during the time of observation,

1

the variables characterizing the shocked material including stress Pl’

density Py> internal energy E,, and material velocity u,, are constant

1° 1’

between the boundary B and the shock front S. The relations between
these variables and their values in the undisturbed material ahead cf

S can be described by the Rankine-Hugoniot jump conditions, or simply
jump conditions, supplemented by an equation of state for the material.
These jump conditions are the equations expressing the principles of

the conservation of mass, of momentum and of energy across the shock
front. They may be derived directly from the equations for hydrodynamic
flow (4). The jump conditions may be shown to hold for any geometry,

independent of the curvature of the shock front (5); hence a derivation



of the jump conditions directly from the conservation principles will

be given for a plane front. It is also necessary to assume that thermo-
dynamic equilibrium exists in both the compressed and the undisturbed
material.

To derive the relation for the conservation of mass, consider a
tube of material along the direction of flow and with unit cross-
sectional area normal to the direction of wave propagation. The tube
is shown by ABCD in Figure 2. It starts in the compressed material and
ends in the uncompressed material. The principle of comservation of
mass is expressed by observing that in a short period of time, dt, the
shock front S travels a distance Udt, while the material which was
initially at the plane, S, has traveled only a distance uldt. During
this flow, the material of mass poUdt, which is encompassed by the shock
during the time interval, dt, has been compressed into a space (U-ul)dt

at a density Py~ Since mass is conserved, the following relation must

follow:

pU = pl(U-ul)- (1)
The equation expressing the principle of conservation of momentum
across the shock front is obtained by reference to the same reactahglec
The force acting on the material contained in the tube ABCD of unit
cross-sectional area is, from the lcft a2cross the plane AD in the shock
state, Pl’ and from the right Po’ which is the ambient pressure. The
net force across the unit area is Pl—Po to the right. 1In the time
interval, dt, the mass of the material encompassed by the shock is
pOUdt, and this much mass is accelerated from rest to a velocity of u -

The increase in momentum of the system is then poUu dt, and the rate of

1
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change of momentum is given by dividing by the time interval, dt; thus

the following equation follows:

P, - P_=p Uy (2)

The expression for the principle of conservation of energy across
the shock front is obtained in a similar way. The plane AD advances a
distance uldt during the time dt, so the work done on mass contained in
the tube of unit cross-sectional area is Pluldt. This amount of work
must be equal to the sum of the increase of kinetic and internal energy
of the system. The increase in kinetic energy is equal to %(poUdt)ui

and the increas in internal energy is (E1 - Eo)poUdt, where E, and Eo

1
are specific internal energy of shocked and unshocked material, respec-

tively. Equating the work done to the gain in energy of the system

gives the energy equation across the shock front.

2
= 1 - i
Plu1 zpoUu1 + poL(E1 Eo) 3)

Combining Equations 1 to 3, to eliminate U and s yields the Rankine-

Hugoniot relation.

E, - E = %(V0 - Vl)(P1 + Po) (4)

Where V = 1/p is the specific volume of the material. It is worth-
while to note that Equation 4 correlates only the thermodynamic vari-
ables of the material ahead of the shock front and behind the shock
front. Equations 1, 2, and either 3 or 4 are the jump conditions which
must be satisfied by material parameters on the two sides of the shock
front. A rather detailed derivation for the above equations can be
found in Courant and Freidrich's book (6).

When the shock transition, shock front, or simply shock, connects



a uniform, undisturbed state with a uniform shocked state, as in the
case just described, it can be precisely defined. 1In co-ordinates fixed
with respect to the shock front the transition zone is the region between
two uniform, moving thermodynamic states of the medium. Material is
flowing into the transition region at supersonic velocity and out at
subsonic velocity.

While this definition is essential to understanding the basic
physical nature of the shock transition, the conceptual realization of
two uniform states, connected by a steady transitiom, is hard to achieve.
For this reason, the meaning of the word ''shock" is extended to include
cases where stress and density change abruptly from one value to another,
even though one or both of the connected states may be changing with
time (7). These waves may be called "non-uniform'" shock waves, and a
typical profile is shown in Figure 3. 1In the illustration, region I
is steady but region III is not. The boundary, A, between 1I and III
is changing with time because region III consists of a relief or expan-
sion wave which propagates at a higher speed than the shock in region
II (8). The state at A differs, in general, from that which would
obtain if III were a uniform state. It is customary to say that states
A and I are connected by a shock transition although this is not pre-
cisely true. The accuracy of the approximation increases as the ratio
of the magnitude of the pressure gradient in region II to that in
region IIT increases, becoming exact when the transiﬁion is discontinu-

ous.
Thermodynamic Considerations of the Shock Front

In the following paragraphs a brief discussion of the thermodynamics
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of the shock transition will be given. The shock transition imparts
both kinetic and internal energy to the material through which it propa-
gates. Furthermore, irreversible work is done on the material as it
passes through the shock front. This can be readily shown by using the
Rankine-Hugoniot relation, Equation 4. Consider two shock waves propa-
gating through two separate specimens of the same material. One shock
has a pressure, Pl’ and the other has a pressure, P1 + dPl. Each is
supposed to be propagating into material in the same state, (PO,VO).

Then the difference in specific internal energies behind the two shock

fronts is found by differentiating Equation 4:
dE1 = %(Vo- Vl)dP1 - %(P1 + Po)dV1 (5).
Since both states are assumed to be in thermodynamic equilibrium, the

change of entropy may be calculated from the combined first and second

laws of thermodynamics:

TldS1 = dE1 + PldV1 (6) .
Substitute dE1 from Equation 5 into 6,
= % - i -
TldS1 z(V0 Vl)dP1 + 2(Pl Po)dV1 (7)1

In order to convert Equation 7 into a more convenient from for discus-

sion, the following two relations are introduced

P
2 29
¢, Vi@, @)
1
and
@ - u)? =viE@, -P)/V_ -V) (9)
1 1Y1 o o) 1 ’

The latter relation may be obtained by combining Equations 1 and 2.
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Equation 8 may be rewritten as

1 (10) .

The following relation follows from Equation 9,

_L 2
(P1 - Po) == U - ul) (Vo - Vl) (11).
v
1
Substitution of Equation 10 and 11 into Equation 7 yields
U - uy 2
TldS1 = %(Vo - Vl)[l-(——az-—ﬁ ]dPl (12).

The locus of all states (Pl,Vl) which can be obtained by a shock
transition from an initial state (PO,VO) is called the Rankine-Hugoniot
curve. Sometimes it is called R-H curve. Since this curve is concave
upward, as shown in Fig. 4, it is clear from Equations 10, 11 and 12
that dSl>O. The ratiq (U - ul)z/Ci is the absolute value for the slope
of the Rayleigh line which is defined as the chord drawn between (PO,VO)
and (Pl,Vl), divided by the tangent to the curve at (Pl’vl)' Since
(P1’V1) is an arbitrary point on the R-H curve, the entropy, S, increases
monotonically with pressure, Pl’ and consequently, the R-H curve lies
above the adiabat passing through the initial state, as shown in Fig. 4.
The two curves have the same slope and curvature at the initial state A.

It is also a straightforward, thermodynamic claculation to show that

the entropy change is the third order in compression (9):

1 QZP 3
S, - 8, = ToT =) W, - V)™ + ----- (13).
o SV,

Where S0 and TO are the entropy and temperature of the initial state,

An expression, in closed form, for Equation 13 may be obtained if an
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Fig. 3. Profile of a Nonuniform Shock.

R-H Curve

adiabat Rayleigh line

Fig. 4. Comparison of Hugoniot Curve and Adiabat.

12
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equation of state is given (10).
Equations of State

Bethe has shown that the equations for the propagation of shock’
may be solved provided an equation of state is known for the pressure

range and provided the following three conditions are satisfied.

1. (big')s >0,
av

2. V(g%)v > -2,

P
3. (%V)E < 0.

In these expressions P is the pressure, V the specific volume, E the

specific internal energy, and S is the entropy. It was observed that
these three conditions are satisfied for all known materials which do
not undergo a change of phase over the pressure range associated with

the shock wave under investigation.
The Equation of State for Aluminum

The equation of state for aluminum was a compésite from various
published data that was prepared by Mr. B. A. Sodek. It was found to
give satisfactory resulg§ for calculation on the propagation of a shock
through a fluid when the hydrodynamic flow equations were used. Since
the solution of the hydrod&namic flow equations are found with a digital
computer, it is possible to express the equation of state for the whole
range of pressures associated with the shock wave. Several different

equations, each of which is good for a certain range, are combined to
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cover the whole pressure range of the shock.

The equation of state for aluminum, in the Mie-Gruneisen form, is

P-P = opyle - ¢) (14)

where P is the pressure, p is the density, and ¢ is the specific internal

energy. The pressure, Ph’ and the specific internal energy, € are
known functions of the specific volumes over the pressure range, for
which the Hugoniot curve for the material is known. The symbol v is
called the Gruneisen ratio. It is a function only of the specific
volume; thus, the Mie-Gruneisen equation is a complete thermodynamic
description of a P, V, ¢ equation of state for the material.

For computations on a computer, the Hugoniot curve in this report
was divided into three pressure ranges. It was constructed by using
the published experimental data of Walsh, et. al., (11,12) in the
pressure range up to 1 Megabar, the published data of the Thomas-Fermi
statistical model for pressure range above 20 Megabars, and an inter-
polation for the range between 1 Megabar and 20 Megabars. An effort
was made to fit the pressure data for the Hugoniot curve to three ana-
lytical equations of the form, Ph = Ay + Buz + Cu3. In the cubic poly-
nomial A, B, and C are constants which are determined by the shape of

v
the Hugoniot curve. The variable, u = (Vg -1 = Q%— - 1), is defined
with Vo and P, as the specific volume and the densit; of aluminum in
its unstrained state. 1In order to be able to use the same analytical
form for the complete pressure range, three different sets of constants,
A, B. and C are needed in the three separate ranges. The values for

the constants A, B, and C and the specific volume ranges in which they

are valid are listed in Table I. The Gruneisen ratia, vy in Equation 14,
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TABLE I

CONSTANTS FOR THE HUGONIOT OF ALUMINUM

V/vo A B c (iir;ZEZEErs)
1.0 to .650 765.0 1659.0 428.0 0 to 1.000
.650 to .518 1150.1 -851.9 3398.0 1.000 to 3.570
.518 to .300 -2194.2 4034.7 2604.3 3.570 to 52.000
TABLE 11
CONSTANTS FOR GRUNEISE'S RATIO
vV a b c .Pressure
o ‘o ) (in megabars)

1.0 to .650 2.130 -5.193 12.098 12.550 0 to 1.000
.650 to .518 2.000 -4.513 6.800 -3.780 1.000 to 3.570
.518 to .300 1.590 -1.355 .439 L0404 3.570 to 52.000
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is regarded as a function of the specific volume. It was also approxi-
mated by a cubic polynomial of the form, vy = Yo + ap + buz + cu3. The
coefficients Yo @ b and c are evaluated in the three pressure ranges
correspond to those ranges, in which A, B, and C are valid. The values

are listed in Table II.
The Equation of State for Iron

The equation of state for iron was taken from the published data

of R. L. Bjork (13). The equation has the following form:
P=la,u+ a u|u|+ e(b +b.p+b uz)
1 25 o 1 2

+ ez(co + clu)]/(e + eo)

The symbols in the above equation are listed below.
P = pressure
p = density
. . _ 3 3
Po = normal density of iron = 7.86 gm/cm™ = 7.86 megagram/m

E = specific internal energy

e = Ep0
po= p/p0 - 1.
The values for the constants in the above equation are listed below:
a, = 7.780 x 10*
a, = 31.18 x 104
bo = 959.1
b1 = 1568
b2 = 463.4
c = 0.3984
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I

‘1

e = 900
o]

0.5306

The units used in the above equation are of meter, megagram and second.

Fundamental Equations of Hydrodynamic Flow

The pressures resulting from hypervelocity impact are of such a
tremendously large value that the yield strength of the material is
neglibibly small compared to the stresses in the material. Since the
rigidity of the material involved is of little significance, the motion
of the material can be adequately described by the partial differential
equations governing the hydrodynamic flow of a compressible fluid.

As stated by Courant anf Friedrichs (14), the following system of
partial differential equations and conditions are needed to give a
complete description of the motion of the fluid except where a shock
front exists.

1. The differential equation expressing the principle of conserva-
tion of mass, which is often called the continuity equation.

2. The differential equation expressing the principle of conserva-
tion of momentum, which is the equation of motion.

3. The differential equation expressing the principle of conserva-
tion of energy.

4. The condition that an equation of state of the fluid medium in
the pressure range under study is available.

5. The condition that the change of state of the fluid medium is
adiabatic except at the shock front.

The differential equations and conditions listed above, together

with the initial and boundary conditions determine the solution to the
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problem under consideration.

The differential equations which describe the fluid motion are
usually written in either Eulerian, or Lagrangean form. In the Eulerian
form, the independent space variables refer to the coordinates system
that is fixed in space and through which the fluid moves. The physical
quantities of interest, such as density, flow velocity, spacific energy,
and pressure, are functions of a space variable and the time t. In the
Lagragean form, the independent space variable refers to a coordinates
system that is fixed in the moving fluid and that is undergoing the
motion of the fluid. With this coordinate system, each selected small
volume of the fluid is permanently identified by its Lagrangean vari-
ables, while the actual position in space is a dependent variable which
is found from the solution. It is possible to obtain the differential
equations for hydrodynamic flow in either the Eulerian, or the Lagragean
form. 1In this report the Eulerian form is discussed. 1In the following
paragraphs, the fundamental, Eulerian equations of hydrodynamic flow
are listed.

Let‘i(x,y,z) denote the position vector in a Cartesian coordinate
system. The properties of the fluid medium are characterized by the
density, p = p(i,t); the flow velocity, u = u(i,t); the specific in-
ternal energy ¢ = e(i;t); and the pressure p = p(i,t). The assumption
is made that all body forces are negligible. These forces include
gravity, heat conduction, viscosity and energy sources. With these
definitions and restrictions, the principle of the conservation of
mass is expressed by the following equation, which is also called the

continuity equation:



20 4L = = e
at + u-vo pPY-u (15)

The principle of conservation of momentum is expressed by

p—g%+ pﬁ'Vu=-7p (16)

The principle of conservation of energy is expressed by

p§%+ pi-Ve = - pv-u (17)
In a problem of spherical symmetry, the dependent variables p(ﬁ,t),
u(i,t), p(i,t) and (i}t) are functions of the radial distance, r,
and the time, t. They can be represented respectively by p(r,t),

u(r,t), p(r,t) and e(r,t). The Equations 15, 16, and 17 then take

respectively the following forms:

e d__po 3 (2
Y + u 3T rz v (r'v, (18)
au U .- _ 2P
P 3t + pu iy =y (19)
and
2€ eE_. _P
Py TP AL r 3 (W (20)
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To obtain mumerical solutions with the large computers, it is desirable

to convert Equations 18, 19 and 20 into dimensionless equations.

|~ S 1Q
~7

Equation 1 be

o

ewritten as

measr
e y

0 .., 20 . ,2u_ 2pu
3t r Jr T

which is equivalent to

.. L 3 2
St 3 (r“pu) . (21)
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Equation 19 may be rewritten as

a4 _ P au
Y ar M

By adding u%% to both sides of this equation, the following equation

follows:
b—!-}- aﬂ:-an.. -a-g .ae
o) At u At e pu 3T +u 3t
By substitution of Equation 21 into this equation, the following equation

is found.

%E (pu) = - %E - pugf’r ul- i‘f%; (rzpu)]-

This equation may be rewritten as

%E (pu) = - -az - 'a—' (rzpuz) . (22)

Finally, Equation 20 can be rewritten as

De o P D (2 - opu 88
P 3t r2 - (r"u) pu el

Adding e%% to both sides of the above equation gives the following
equation:

Q€ 2 . P 2.2y - Q€ ap
P 3t + e : 7 ar (ru) pu - + e 3t

r
Substitution of g% from Equation 21 into the above equation leads to

the equation below,

g—t (pe) = - 22- %r' (rzu) - pu -gf + el- ;1‘5 %; (rz,ou)]

r

_ b 2y .1 3 .2
r2 = (r"w rz aF (r“pue),

which may be rewritten as,
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%G = -G @t L @) (23)

T
Equations 21, 22 and 23 are in convenient forms to change into dimension-

less equations.
The Artificial Dissipative Mechanism

At the shock front, the density, flow velocity, specific energy,
and the pressure are all discontinuous. At the shock front, the dif-
ferential equations must be replaced by the Rankine-Hugoniot jump
conditions, which serve as internal boundary conditions in such a way
that the conditions of the fluid on the two sides, behind and in front,
of the shock front are related. These relations provide sufficient
conditions to relate the differential equations on both sides of the
shock front (15). The application of the jump conditions, as internal
boundary conditions in solving the problem of shock propagation, is
known as shock fitting. The process is really a complicated, iterative,
trial-and-error method. A rather detailed discussion for feasible
examples to use the shock fitting method was given by Richtmyer (16).

In order to avoid using the shock fitting method, von Neumann and
Richtmyer (3) devised an approximate method which is primarily for
computer calculations. This method automatically calculates across

the shock front for hydrodynamic flow problems, wherever they occur.
The essence of the method is to replace the Hugoniot jump conditions

in the calculations, with an artificial dissipative mechanism. Typical,
naturally-occurring dissipative mechanisms are viscosity and heat con-
duction, which characterize a real fluid. The effects of the arti-

ficial dissipative mechanism are to tend to smooth the shocks, so that
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the surface of discontinuity, across which the physical quantities of
interest are discontinuous, is replaced by a thin transition layer in
which the physical quantities of interest change abruptly, but continu-
ously. With the incorporation of the artificial dissipative mechanism,
or pseudo-viscosity, the differential equations describe the motion of
the hydrodynamic flow in the transition layer as well as elsewhere in
the flow. By introducing the artificial dissipative mechanism, the need
to apply internal boundary conditions is avoided. The Rankine-Hugoniot
conditions still remain true across the transition layer, which really
is a widened shock front. The conditions required to select a suitable
artificial dissipative term are listed below:

1. The introduction of the artificial pseudo-viscous term in the
momentum and energy equations must have a negligible effect on the
solutions of the hydrodynamic flow problem everywhere except across the
transition layer.

2. The Rankine-Hugoniot jump conditions must remain true across
the transition layer, so the hydrodynamic flow equations have solutions
without any discontinuities.

3. The thickness of the transition layer must be independent of
the shock strength and of the state of the material into which the
shock is moving.

Various forms may and have been employed for the artificial pseudo-
viscosity term, which is designated by Q. The specific form of the
damping term is not important since it introduces a pseudo-damping
effect to control the computer introduced oscillations. After trials

by many investigators, one of the most useful forms is
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col 2322

This form for the Q-term was suggested by Richtmyer (17). This form
produces damping that is proportional to the square of the velocity

gradient. This is desirable for it quickly damps the computer gener-~
ated osciallations. The use of the absolute value on one gradient is

necessary to damp out both increasing and decreasing velocity gradients.
Dimensionless Differential Equations

In order that the numerical values of the variables will be within
the numerical range of the digital computer, all of the variables are
scaled. A dimensionless form of the hydrodynamic flow equations would
also be highly desirable to permit easy scaling of problems for dif-
ferent initial values.

Let D, U, E, P, T, and R denote the density, flow velocity, specific
internal energy, pressure, time, and radial distance, respectively, in
the dimensionless hydrodynamic flow equations. The Equations 21, 22

and 23 are made dimensionless as shown in the following table.

p = p,D. (24)
u = CoU' (25)
€ = eoE. (26)
P =prF. (27)
t = toT. (28)
r = roR. (29)

In these relations, Py Co’ eo, po, to and ro are the scaling factors

for each variable, as indicated. The substitution of the relations in

24, 25, 28 and 29 into Equation 21 yields the following equations:
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3(p D) 1

o T . B 2.2
D) G2 3D Tk PP
o ) o
which may be rewritten as
Ct
AD__ 00 1 3 2
3T = Rz N (R"DU) . (30)

By substituting the relations in 24, 25, 27, 28 aud 29 into Equation

22, the following equation is obtained.

2.2 2 2
3(p DC 1) _ alpP) 1 a(r R ?gPCoU )
B(toT) a(roR) riRz a(roR)

This may be rewritten as

20w _ Po 1 % o %% 3@%oud (31)
aT Po Co T, 3R r, AR

For the energy equation, Equation 23, the substitution of the relations

in 24, to 29 gives the following:

2.2 2.2
a(poDeoE) _ 1 - a(rOR CoU) . a(roR poDCOUeOE)_1
p(toT) riRz o a(rOR) a(rOR) -
Simplification of the above equation gives
A(DE) _ Coto Py P a(RZQ) - Coto 1 a(RZDUE)
AT T P8, R2 3R r, RZ AR
(32)

In order to make Equations 30, 31 and 32 dimensionless it is
necessary to employ the following relations between the scaling factors,

C e t and r . These are:
Por %o €52 Por b o

COtO
o0 -, (33)
(o]
P
2 - (34)
p o)
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and

= 1. (35)

The values for the variables in the flow equations may be confined
to almost any desired range by the selection of scaling factors that
satisfy Equations 33, 34 and 35. For illustration, a set of scaling
factors that have been found to be satisfactory are selected in the
following manner. The selected values are certainly not unique. Choose
the density, Py to be the value for aluminum under standard conditions;
i.e., Po = 2.785 grams per cm3. Choose the reference pressure to be
P, = 1 kilobar. Then <, and e, are determined by Equations 34 and 35.
Choose some arbitrary distance, T for the part of the problem that is
of interest, then Equation 19 and the already determined value for y
will fix to. With the scaling factors selected, Equations 33, 34 and
35 may be used to convert Equations 30, 31 and 32 into the following

dimensionless equations.

aD__1 3 2

27 R ®w, (36)

S = .22 _ 3 p2ppl

3T (Du) R R (R"DUT), (37)
and

el =P 3 R4y - L 3 (g2

3T (DE) R2 R R Rz ] (R"DUE) . (38)

When the pseudo-viscous term, designated by Q, is inserted into

Equations 37 and 38, the following two equations are obtained:

2oon--2 -2 w22
Lo - -L e+ - @) (39)
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and

2 N
25 (OE) 5

@+ 2 R - =2 ®our) (40)
R AR

2 R

Equations 36, 37 and 38 are in the final forms. They may be readily

differenced and employed in a computer program.



CHAPTER III

CONSIDERATIONS ON THE PROPAGATION OF SHOCKS

THROUGH AN ELASTIC MEDIUM

In the preceding section, the propagation of shocks at extremely
high pressures was considered. The pressures were so great that the
mechanical properties of the solid state could be neglected. This is
equivalent to the statement that a negligible error results by omission
from consideration of the yield strength and the shear strength of the
target in its original state. For pressures below the dynamic yield
strength, the material is elastic. Shocks of small amplitude are trans-
mitted through an elastic medium at constant velocity and with no
permanent change in the physical structure of the medium.

The basic equations for the elastic propagation of small shocks is
to be considered in this section. Small shocks are equivalent to sound
waves. Since there is an exceedingly large backlog of information on
the acoustic properties of solids, all necessary background information
is available. The reason for the intense interest in this subject may
not be immediately apparent when the basic problem is known to be hyper-
velocity impact. The reason for the interest becomes ogvious, however,
when it is recalled that the only possible mechanical measurements on
the effect of a hypervelocity impact must be observations on the elastic

motion of the metal that surrounds the point of a hypervelocity impact.

27
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For a definitive discussion of the states of matter that occur
during a hypervelocity impact, a simple experiment is selected to serve
as an illustrative example. Consider the hypervelocity impact of a
small particle, such as a sphere, on a target which has the shape of a
hemisphere. The point of impact of the sphere is to be at the center
of the hemisphere. An impact is defined as hypervelocity when the
impacting body, or missile, approaches the target at a velocity which
is greater than the velocity of sound in the elastic material of the
target. Immediately after the start of the impact, the pressure is very
high around the entering missile. As a consequence of the high pressure,
the missile and the material of the target, that is within the shock
front, may be considered to be a non-viscous fluid that was produced by
the impact. The flow of this missile-produced, that the shock produced,
fluid may be calculated with the equations of hydrodynamic flow that
were considered in the first section of this report. As the roughly
hemispherical shock continues to propagate away from the initial point
of contact, the pressure in the shock front must decrease for the area
of the shock frout increases as the square of the distance from the
point of impact. Eventually, the shock pressure will fall so low that
it will no longer produce a fluid; instead the medium will become a
shock-produced plastic. The propagation or the snock in tnis plastic
region will be considered in the last section. As the hemispherical
shock continues to propagate, the shock pressure will become so small
that the pressure does not permanently change the initial, elastic
characteristics of the medium. This elastic state of the target material
is the one that is now to be discussed.

In the elastic state, the shock front is not distinguishable from
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the propagation of a sound wave. As a consequence, the propagation of
the shock follows tne laws for the propagation of acoustic waves through
the medium. This means that there is a longitudinal, or dilational
wave like those in the fluid region. In the elastic region, however,
the dilational wave propagate at an almost constant velocity, which is
practically independent of their amplitude. Actually, the velocity must
increase slignhtly with an increase in pressure. This is required for a
stable shock wave by one of Bethe's three conditions and accurate
measurements have shown it to be true. Since the shock wave front is
not a true hemispherical wave, it will produce some shear; particularly
near to the surface, wnere there will be transverse, or shear waves.
These waves are called Rayleigh waves. The Rayleigh waves propagate
slower than the dilatioual waves; that is, at approximately 2/3 of the
velocity of the dilational waves. They also decrease in amplitude
exponentially with the depth.

Bethe's proof that the shock propagation may be calculated from
an equation of state for the material is valid, as indicated above. 1In
the fluid range, the equation of state must be of the most general
form with three variables; such as the pressure, the density and the
internal energy. For low pressures, where the elastic and, to a limited
extent, the plastic waves exist, the increase in entropy across the
shock front is amall enough to be neglected. As a consequence, the
velocity of propagation may be calculated with cousiderable accuracy
from a relation between the pressure and the density. With this
assumption, the differential equation becomes linear and many solutions
have been found with this basic assumption. In the following discussion,

the manner of calculating the speed of propagation of the dilational and
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the Rayleigh waves is shown.
Comments on Elastic Shock Waves and Their Stability

In contrast to fluids, solids resist shear so that the thermodynamic
description of a solid, which involve many components of stress and
strain, is much more complicated than that of a fluid. If attention is
confined to plane longitudinal waves, which are moving normal to the
faces of a slab, no shearing forces arise. 1In this example, there is
an analogy betwee.. elastic solids and fluids. Solids are capable of
elastic deformations under certain conditions, and of plastic changes
in snape under otners. The propérties of materials which characterize

them as elastic, or plastic, can be expressed mathematically by tne

relatiou that exists between the stress g, and the strain e:

o = a(e)

The above relation depends only on the nature of the material under con-
sideration. A material is called elastic when the stress depends lin-
early on the strain. Most material are elastic when the strain does not
exceed a certain limit, which is called the critical strain. A material
is called plastic wheun the stress is nonlinear function of the strain
and tuis only occurs when the strain is greater than the critical strain.

For most solids, the compressibility decreases as pressure increases
in adiabatic compression, so that the adiabat for hydrostatic compression
in the P-V diagram is concave upward; i.e., (azp/avz)s > 0. This is
exactly Bethe's condition for which compressive shocks are stable (1).
The decrease in compressibility for solids with increasing pressure was

shown by Bridgman (18). When dilational waves of large amplitude are
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propagated through solids, shock waves result. The elastic waves of
dilation are propagated through a solid with the velocity [ (\ + Zu)/p]%;
or, when expressed in terms of the bulk modulus K, the velocity is
| [(x + 4u/3)/p]%. It follows from the general theory (19), that this
| is also the velocity at wnich a purely dilational spherical wave will
propagate in a solid for which Lame's constants are )\, W, and the bulk
modulus is K. As a result of the decrease in compressibility with
increasing pressure, Bethe's coudition for the formation of a stable
shock wave is fulfilled. 1In other words, tne increase in the bulk mod-
ulus, K, with an increase in pressure dominates the expression for tne
i . velocity, (K + 4/3 u)/p]%; and results in an increase in the velocity
|
of the elastic wave with pressure. This is the intrinsic requirement

of Bethe's condition.
| Propagation of a Spherical Elastic Shock

The case is discussed of a spherical elastic disturbance which
propagates in a solid with tne Lame's elastic constants and ), p and
with a bulk modulus, K. The coordinate system together with the related
stress and strain components are shown in Figure 5. All physical

‘ quantities of interest are functions of the coordinates, r and t, as
in the fluid regiou. Let O.» Ops € and € be radial and tangential
components of stress and strain, respectively. Let u be the particle

displacement. The strains are defined by

¢ =M (D

r ar’

c =§ . ()



Fig. 5.

Co-ordinate System and Stress Components.
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The stresses and strains in elastic region are related by Hooke's law:

o LR -

E ar Ur 2V0't ’ (3)
u - - -

ET= a-wv o, - Vo, (%)

From Equations 3 and 4, C and o, are expressed by

E
o T TE Ay [ S+ iy, "

E u :
T TF WA -2 T TV %%3 (&

The equation of motion is

ac 2
—xr_ 2 - =, Qu
v + < (cr ct) p = @)

ot
The elimination of the stresses among Equations 5, 6 and 7 results in

an equation for u, as below:

2lus2 au_ 201 2% ©
2 r 3r 2 2 2
or r c, 3t
where Ce is given by
2 (1 - VE A+ 2u A
— = = + )
Ce a1+ v)Q - 2~v)p 0 (K 4/3 G)/p 9

In this expression, ) and u are Lame's constants, K is the bulk modulus,
G(= p) is the shear modulus and p is the density. It is to be noted
that the wave velocity depends upon tne shear modulus as well as on the
bulk modulus. The physical reason for this is that the elements are
subjected to a combination of tension and shear.

In dealing with shock waves in an elastic, or plastic material, as

in the fluid region, certain internal boundary conditions must be
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~ considered (20). At the shock front, the Rankine-Hugoniot conditions

must be satisfied and, at the boundary between an elastic and a plastic
region, the stresses and mass velocity must be continuous. After the
particle displacement, u, is found as a function of r and t, the radial
strain and stress may be found from Equations 1 and 5, respectively;
the shear strain and stress may be found from Equations 2 and 6,

respectively.
Rayleigh Waves

Onlyvtwo types of elastic waves, dilational waves and shear waves,
can be propagated in an unbounded isotropic solid. When there is a
boundary surface, elastic surface wave may also occur. These surface
waves, which are similar to gravitational surface waves in liquids,
were first investigated by Lord Rayleigh; hence, they are called Rayleigh
waves. It was found that their amplitude decreases rapidly with depth,
and that their velocity of propagation is less than that of body waves.

Consider a sinusoidal surface, or Rayleigh, wave of frequency, f,
velocity ¢, and wavelength A which is propagating along the surface in
the x-direction. Take the direction toward the interior of the solid
to be z-direction. The amplitudes of the stress components are desig-
nated O« and o__. It is desired to calculate the decrease in amplitude,
u, in the x-direction and the decrease in amplitude, W, with depth in
the z-direction. For steel with a Poisson's ratio of 0.29, the calcu-
lated amplitude (21) are plotted in Figure 6. The curves are given in
nondimensional forms, the peak value of displacements u and W being

plotted as the ratios;/wo and'm/mo, where w, is the amplitude of the

vibration in the z-direction at the surface. The peak values.Exx,'Byy
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of the stresses are plotted as the ratios gxx/(cxx?o and czz/(cxx?o’
where (6: ) 1is the amplitude of g__ at the surface. These ratios are

XX 0 XX
plotted against Z/A, where A, as stated earlier, is the wavelentth of
the vibrations. The curves illustrate clearly how the amplitude of the
vibration in the x-direction passes through zero whereas the amplitude
in the z-direction first increases slightly and tuen decays monotonically.
They also snow that Crx component changes sign, while the 0, component
reaches a maximum at about 0.33/A and then decays asymptotically with

depth.



CHAPTER IV

CONSIDERATIONS ON THE PROPAGATION OF SHOCKS THROUGH

A PLASTIC MEDIUM

The preceding discussion in this report started with a considera-
tion of the propagation of a shock and of the fluid flow in the shock-
produced fluid. The compression by the shock is so great tnat éne
medium that was traversed by the shock front may be considered as an
inviscid fluid, wnile tne shock front propagates into the undisturbed
solid. This report has continued with a discussion of the propagation
of a snoék front tnrough a solid, elastic medium where there is no flow
benind the shock front. There is an undetermined pressure range wnich
exists between the elastic solid a.d the inviscid fluid region. This
region is called a plastic medium and permanent distortion results from
the passage of the shock. There is some flow, but the flow is against
strong restraining forces.

This intermediate, plastic region is bounded on the low pressure
side by the pressure at which permanent distortion of the medium starts
to appear after the passage of the shock front. This subject is dis-
cussed at length in two sections that immediately follow this introduc-
tton. They are designated: (1) the Elastic and Dynamic Yield Strength
and (2) the Bauschingér Effect under Shock Conditions. 1In the plastic
range, there are believed to be two shocks that propagate at slightly

different velocities. The upper limit of the plastic range may be
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considered as the pressure at which the two shock fronts disappear.

This is not a good criteria for two reasons. The so-called precursor
shock becomes very small in the pressure range for which- the plastic
region merges into the fluid region. With the precursor amplitude

very small, the small amplitude may not be sufficiently observable to
determine the upper limit of the plastic region. There is another
reason for confusion. The "fluid" shock, as contrasted to the precursor
shock, propagates at a velocity that increases with pressure. As the
pressure increases, the "fluid" shock may propagate at a velocity equal
to, or Easter than the precursor. 1In this case, the precursor shock

would appear as a ripple on the oscillating shock front and would prob-

ably be overlooked.
Static and Dynamic Yield Strength of Metals

For sufficiently small strains the linear stress-strain relation

(22),

o5 = Zueij + x(e11 toey, t 633) (D

is applicable within an isotropic solid which is characterized by the
density and by two elastic constants, u, and A. In Equation 1, Gij
and eij denote components of the Cartesian tensors for stress and
strain, respectivgly.

For the case of one-dimensional compression in the x-direetion,
€11

= AV/V and all other €35 " 0. By using Equation 1, the pressure

along the x-direction, is given by

011)
= AV

whereas
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C2 T 933 T Ay (3
Thus, the anisotropic part of the stress for the case of one-dimensional

strain is
C Gy = Gyy - Oan = 2D fo - 0y, <X (4)
911 7 %2 T %11 " %337 Yy T o117 %22

where Y is the static yield strength in simple tension. The condition
merely states that Equation 4 holds for stresses below the static yield
strength.

For the case of a hydrostatic compression €11 = €29
and eij =0 for i # j. By the use of Equation 1, it is seen that the

associated stress tensor is

2 AV
= = = "= (& av
P=o0); T =o' =GRty (5)
c..' =0 for i # j.
ij

An idealized stress-strain curve is shown in Figure 7. The presence

of a cusp in the ¢ curve implies the position of the yield point, for

- I\ A
%11 3 My

11
the derivative of the offset, cll' between this curve
and the hydrostatic curve, suffers a discontinuity at Y. The hydro-

static curve is known to be smooth and to have no cusps. The pressure

associated with the cusp is called the "Hugoniot elastic limit" or

"dynamic elastic limit" (23).
Bauschinger Effect Under Shock Conditions

The Bauschinger effect is well known for heavily cold-worked
metals. It is of interest to this discussion for it may increase the
dynamic yield strength. The Bauschinger effect predicts that compres-
sive loading of the metal to beyond the yield strength, by any means,

will increase the original compressive yield strength, while it slightly
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Fig. 7. Stress-Strain Curves for the Hydrostatic and
One-Dimensional Compressions of an Isotropic Solid.
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decreases the tensile yield strength. The early literature on shock
loading has not reported a Bauschinger effect from shock loading at
strain rates up to 106 sec-l. It is to be recalled that the strain is
expressed in cm/cm, so the only unit for the strain rate is reciprocal
seconds. Jones and Holland (24) reported in 1964 that the Bauschinger
effect is observed for mild steel under the extremely high strain rate
that occurs in the explosive loading process. The following information
is collected from their article.

The article by Jones and Holland clearly demonstrates that steel
with 20 per cent of prior tensile cold work exhibits the Bauschinger
effect. The results that demonstrate this result are reproduced in
Figure 8. The experimental stress-time profile from the article are
shown in Figure 9. The latter figure indicates the existence of a
Bauschinger effect under explosive loading which results in very high
strain rates. The modification from the Bauschinger effect on a one-
dimensional elastic-plastic stress-strain path during a loading and
unloading cycle was proposed. Their proposed cycle is reproduced in
Figure 10, but they do not give a detailed, quantitative analysis.
Under the conditions of the shock loading of mild steel, the experi-
mental results are sufficient to show the Bauschinger effect for cold-
worked mild steel under shock loading. ¥From the preceding evidence,
the Bauschinger effect may lead to serious errors. The conclusions
from the cited article have several practical implications of a general
nature. They are quoted:

1. 1If the dynamic yield strength of a meterial is to be

accurately inferred from shock loading data given in the

literature, care must be taken to duplicate the metallurgical

history and the direction of loading. Unfortunately, this
has not been given for more of the work reported in literature.
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Fig. 8. Quasistatic Stress-Strain Curves for
Annealed and Cold-Worked SAE 1018 Steel.
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Strain which Illustrates Modifications Resulting
from Strain Hardening and the Baushinger Effect.
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Alternatively, the Bauschinger effect may provide another
experimental parameter which may be used to control the
amplitude of the elastic wave profiles for a given metal.

2. In studying the stress-strain behavior of a metal under
shock loading on the basis of free-surface measurements, it
may be necessary to include the Bauschinger effect as shown
in Figure 10, in the usual elastic-plastic theory of loading
and unloading in one-dimensional strain. Such an effect has
always been neglected in the past and would result not from
prior deformation, but from work hardening during passage

of the loading wave followed by reverse loading around the
hydrostat.

Evidence for Existence of Two Successive Shocks

In the low pressure region, the behavior of the shock wave in a
metal is determined by the yield strength of the metal. The shock
structure depends on the final peak pressure reached in the compression.
Because of the connection between the properties of the material and
the structure of the shock front, the investigation of this structure
increases the amount of information that can be obtained from shock
experiments. The connection between the shock structure and material
properties is not always unique, and possible alternative interpreta-
tions must be carefully weighed (25). The first concept to be abandoned
is that the shock pressure is a simple hydrostatic pressure., as would
occur in an ideal fluid. The compression by a relatively small shock
of any material with a définite yield strength must be calculated by
the use of stress tensors. If the smallest element for consideration
with a practical structural metal consists of several crystals, the
stress tensor must be isotropic. The shock compression allows no net
macroscopic strain to occur immediately behind and parallel to the
shock front. The Rankine-Hugoniot jump conditions show that measure-

ments of the propagation velocity and of the normal component of particle
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velocity give information only about the component of compressive stress
normal to shock front. These considerations lead to the conclusion

that the stress parallel to the wave front is essentially unknown, except
by inference from other information that may be combined with the veloc-
ity measurements (26).

For consideration of shock stability, the yield point has the same
effect as a phase transition (27). The stability of a shock transition
may be tested, in general, by connecting the initial and the final state
of the material on its Hugoniot curve by a straight line. If the line
does not intersect the Hugoniot at intermediate points, the shock
transition is stable, otherwise it is not. The most direct evidence of
the existence of two successive shock waves is the motion of the free
surface that results from the incidence of the shock wave (28). The
velocity from a single shock is essentially constant, as is shown in
Figure 11 (29). The deceleration results from the finite tensile
strength of the material and the decay behind the incident shock. If,
only a single shock is formed.

in Figure 12, P.. lies above point B

1 1

The shock velocity, in this case, can be found by eliminating the
particle velocity from Equations 1 and 2 in Chapter I. If, again in

Figure 12, P. lies below point A, which is the dynamic elastic limit of

1
the material, a single elastic compression occurs. If P1 is between
points A and B, the shock consists of an elastic precursor of amplitude
PA followed by a slower moving shock with peak pressure, Plo The case
is shown in Figure 13. * For this case, the pressure between the elastic
precursor and the shock is shown as constant. This holds for a sharp
yield point and for a constant yield stress in simple tension. The

velocity of a single shock with a peak pressure, Pl, above point B in

13
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Fig. 11. Free-Surface Velocities Produced by
Single and Double Shock.
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Figure 12, is given by
U=V [—=] (5)
o Vo -V

which is proportional to the square root of the negative slope of the
chord drawn between the points representing the initial, and the final
state on the Hugoniot curve (30). The velocity of the elastic precursor,

Ue’ can be shown to be equal to

- 3K (1 -v).%
Ue = [p a+v)'? (6)

where K is the bulk modulus of compression, p the density of the material
and vV is Poison's ratio (31).

For the case of double wave structure that was mentioned earlier,
the velocity of the elastic precursor, PA’ is again given by Equation 6.
Since P1 is above the dynamic elastic limit, plastic flow occurs and is

propagated with the plastic wave velocity

5
v, = (K/p) %, )]

where K is again the bulk modulus of the material. As mentioned earlier,
Bridgman showed that for most solids, the bulk modulus K increases with
increasing pressure. At stresses only slightly greater than the dynamic
elastic limit, the plastic wave velocity from Equation 7 is smaller than
that of the elastic wave given by Equation 6. However, as iue applied
stress increases, the plastic wave velocity also increases because of
the decreasing of compressibility of the material. As a result of this,
further increase of pressure causes the plastic wave velocity to exceed
that of the elastic wave. A pressure exists at which the plastic wave

velocity becomes equal to that of the elastic wave. For aluminum this
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Fig. 12. Equation of State in Elastic-
Plastic Solid.

Fig. 13. Shock Structure in Elastic-Plastic Solid.
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pressure is about 105 Kilobars (32). The material is in the elastic
region for pressures under the dynamic elastic limit.

An elastic precursor shock was reported to precede an explosively
generated shock wave in steel by Pack, Evans and James (31) in 1948.
Later studies by other investigators have measured the amplitude of
this wave for various materials (33,34) and several theories have been
formulated for shock waves in materials which may be deformed plas-
tically (35,36,37). Dynamic yield strength for compressive elastic
waves have been derived from the shock wave experiments and compared
with tensile experiments. Generally, the results support the hypoth-
esis that dynamic, compressive yield occurs by the same mechanisms as
yield in tension. Calculation of the dynamic elastic limit for a
plastic material with fixed yield stress indicate that it exceeds the
hydrostatic value at a given strength by two-thirds of the yield stress

(38).
Equation of State for Aluminum in Low Pressure Region

As an example of shock loading, consider a plane, uniform, com-
pressional shock wave which propagates in a uniform material as shown

in'Figufe 14. A small element of volume in the medium with cross-

of the pressure, Px’ in x-direction. The application of a one-
dimensional compression Py requires a pressure PZ=Py to prevent an
expansion or a contraction on the sides of the volume element. A
material is called '"elastic-plastic" provided (1) it yields according

to the von Mises-Hencky criterior and (2) it is elastic at lower

stresses. The von Mises-Hencky criterior is PX—Py = Gy where c&,is
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the yield strength in simple tension.

A Hugoniot relation for such a material can be readily constructed,
if strain rate effects are neglected. While the compressed material
behaves elastically, compressive stresses and strains are related by

Hooke's law:

Px = (A + 2u) €y (8)
Py = ey 9
P?: = xex (10)

where € = 1 - po/p, and ), W are the Lame's elastic constants. By
definition,

P =

wir=

- 2 =
(Px + Py +P) = O+ W €, = Ke (11

where K is the bulk modulus of the material.
By combining the relations in Equation 8 and 11, the following

equation is obtained.

P = (K+awe = R+DA - o, /p) 12)

where | is the modulus of rigidity. While the compressed material is
in the plastic state, the plastic stress function in simple tension is
Py

Insert this relation in Equation 11 and obtain the

P -P =g (¢
X y y

relation,

P=p = % cy(ep) (13)

In terms of P and cy, Px may be expressed by

P=B (o/p) + % o, (P (14)

where ?(po/p) is the hydrostatic pressure corresponding to density p

and ¢f is the equivalent plastic strain in simple tension. The normal
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stress, Px’ in the plane wave exceeds the hydrostatic pressure correspond-
ing to the same density by an amount depending on the yield stress. The
plastic strain corresponding to the stress, Px’ is the difference between
the elastic strain that is required to resist the stress, Px’ and the
total strain produced by Px. The resulting equation may be readily
solved, graphically. If c&(ep) is a constant, the locus of elastic-
plastic states lies above the hydrostatic pressure by % cy. The P-V
diagram for hydrostatic and elastic-plastic compression of aluminum (38)
is shown in Figure 15.

By different experimental techniques from those of G. R. Fowles
(38) , Lundergan and Hermann (32) were able to formulate an impirical
equation of state for aluminum in the low pressure region. Their
equation has the following form for stress below the dynamic elastic
limit:

- AV,
P = 1044 (Vo

where P is in Kilobar.
Beyond the dynamic elastic limit the equation has the following

form:

P = 744 (é‘i) + 1.6,



CHAPTER V
HUGONIOT CURVE FOR SPECIAL MATERIALS

The Hugoniot curve has been defined for metals as the locus of
points on the P-V p}ot to which a material is compressed by shock waves.
Compression by a shock is the principal experimental technique that is
employed to obtain information on the equation of state of metals at
high pressures, densities and temperxatures. A shock compression from
a single, initial value of the density gives a single point on the P-V
diagram and the entropy increases with amplitude of the shock. Shock
compressions, for a series of samples with different initial densities,
yield more data and a complete region of the P-V diagram may be con-
structed (41). Compression to a seleptéd.point on the P-V diagram gives
a compressed state at high temperatures as the initial poroéity is
increased. The simplest method to obtain various initial densities is
to prepare sample with different porosities from fine powder. The
fractional porosity, m, of a metal is defined as m = po/ﬁ, where P
is the density of solid-metal particles of the sample and B.is the

mean density of the whole porous sample.
Heating Effect with Porous Metals

In a typical porous material, individual particles of solid matter
of normal density, Py are separated by empty spaces. In shock com-

pression, the work done by the external pressure is first used to

53
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compress the porous metal to a solid. A shock wave of low intensity

can compress porous matter to a solid matter of normal density. For

the final pressures equal the density after shock compression is smaller
for a porous material than for a nonporous one. The final density
decreases as the initial porvosity increases. This is a consequence of
the greater heat content of the cmmpressed porous material. The physi-
cal explanation is shown in Figure 16. The path along which work is
done by the shock-compression forces on the proous material is longer
than the corresponding path for the nonporous material. Since half of
the work is needed to increase internal energy, the increase in the

thermal component, EP

T of the internal energy of a porous material is

considerably larger than the corresponding quantity, E;, for the non-
porous material. The additional temperature rise from the porosity of

the material increases the thermal component of the pressure, Pt =P - PC,
which opposes the compression. As a consequence of greater heat input,
the density of a shock-compressed, porous sample is lower than that of

a nonporous sample under the same shock amplitude.

The shock compression of samples of the same material with different
initial porosities was first considered theoretically by Ya. B.
Zel'dovich and A. S. Kompaneets. They used an equation of state with
a constant coefficient; ~ = V(%%)v. Their results are shown in Figure
17 by pressure-relative density (7 = p/po) diagram. Shock compression
curve of the nonporous material, with m = 1, and of samples with various
initial proosities, m > 1, all start from the point P = 0, T = 1, which
is the initial state of the nonporous material. This results from the

assumption that a very weak shock is capable of compressing a porous

material so that its density becomes Por
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P. = cold compressibility curve
P =1 1 c
¢ m= m> at absolute zero

\ ET = thermal component of internal
\ energy for nonporous material
\ B Eg = thermal component of internal

energy for porous material

2\ A \Y (}-)
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Fig. 16. The P-V Diagram for Shock Compression of Porous
Material.



56

For higher values of m, the compressive shock shifts the curves in
the P-1) diagram in Figure 17 toward lower value of 7. Let h = 1+ 2/y
denote the limiting compression of a nonporous body as P increases
indefinitely. For the shock compression curves corresponding to a

porosity, m, in the interval h > m, > 1, the density after shock com-

1
pression increases with an increase of the pressure, approaching

h
asymptotically to a limiting value, Min =7 > 1. These curves lie in
the region, 7 > 1, where their slopes, (%%)H’ are positive. The effect

of shock heating is particularly remarkable at the porosities, m, > h.
In this case, the shock compression curves have an unusual, inverted
e . o aed dp.

form. They lie in the region and may have derivatives, (dﬂ)H<D' A
shock wave of vanishingly small amplitude is capable of compressing a
porous sample to the normal density of the nonporous material. When

m > h, a wave of finite amplitude cannot produce this much compression.
An increase in pressure produces a decrease in the density instead of

the increase in density that might be expected. The density after

shock compression approaches asymptotically to a limiting value of

s = b < 1. When the porosity m = m_, = h, the shock compression
lim m, 2
curve coincides with the ordinates 7 = 1 along which (g% g= e The

shock compression curves for porous tungsten with various porosities
and those for iron with m = 1.4 are shown in Figure 18 and Figure 19,

respectively.
Hugoniot for Marble

A shock adiabat for marble was reported by Dremin and Adadurov
(42) in 1959. A light-gray marble was used which had an initial density

of 2.70 gm/cm3. The following results were obtained. The shock
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Fig. 17. Compression of Porous Samples for Various
Values of h/m with h = 1 + 2/y.

57



P (1012 dynes/cmz)

m=1.8 m=1
m=2.2

P S " PR

0.7 0.80.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 n

Fig. 18. Shock Compression Curves for Porous Tungsten.
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Density m=1, and Porosity m = 1.412.
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pressure extends up to 500 Kilobars.

The dependence of the shock wave velocity, U, on the particle
velocity, u, is shown in Figure 20. The Hugoniot with pressure vs. the
ratio of the density under compression to normal density is given in
Figure 21. There is a remarkable discontinuity in the U vs. u curve at
about u = 1,000 m/sec, as shown in Figure 20. This is attributed to a
phase transition. The segment AB on Figures 20 and 21 corresponds to
a region of mixed phase. The boundaries of this region were established.
As was shown by Drummone (43), Bancroft, Peterson, and Minshall (34),

a configuration of two shock waves exists in the phase-transition region.
The disturbance of the first shock wave was measured experimentally.

It was found to propagate in the entire phase-transition region at a
constant velocity which is greater than the velocity of the second

shock wave. With increasing pressuré amplitude, the velocity of the
second shock wave becomes larger and larger; and, eventually, at pres-
sures corresponding to point B in Figure 21, the velocity of both

shock waves becomes equal. With a further increase of the pressure,

only one shock wave propagates in the material.

Two empirical equations are found. One gives the relation of the
pressure, P, to the density ratio, p/po and this is the Hugoniot equation
of state for marble. The other equation relates the shock wave
velocity, U, and the particle velocity, u. The match of experiment to
empirical data is shown in Figures 21 and 20. Up to the phase-transition
region, these relations have the form

7.23

P = 42.6 x 10° T(p/p) - 1]

where P is in bars:
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U = (3.39 + 2.0u)
where both U and u are in km/sec. After phase-transition the relations
have the form ’
P = 106 x 10° [(p/po)4'1 -1] bars.
U= (4.0l + 1.30u) km/sec.

In order to determine the boundary of the phase-transition region
without considerably increasing the amplitude of the shock wave, the
point at which a further increase in pressure brought no change in the
shock wave velocity in the marble was found. This velocity is equal
to 5.40 km/sec. The intersection of the straight line U = 5.4 km/sec
with the U-u curve in Figure 20 gives the boundary points, A and B.

The corresponding pressure at the point A is equal to 146.5 Kilobars,

while p/p_ = 1.230. At point B, the corresponding pressure is equal
PIp,

to 155.8 Kilobars with p/p0 = 1.247.
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Fig. 20. Dependence of the Shock Wave Velocity U on
the Particle Velocity u. A-Segment up to the Phase
Change; B-Segment After Phase Change; Mixed Phase
Region Between A and B.
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Fig. 21. Shock Compression Curve of Marble. A-Segment
up to the Phase Change; B-Segment After the Phase Change;
Mixed Phase Region Between A and B.
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